
© International Baccalaureate Organization 2012

Approved notation for developing
pseudocode

Diploma Programme

Approved notation for developing pseudocode

When developing pseudocode teachers must use the symbols below, which are those used in
mathematics.

This information should be distributed to candidates as close as possible to the commencement of teaching
of the course. This notation sheet will be available to candidates during the external examinations.

Conventions Variable names are all capitals, for example, CITY

Pseudocode keywords are lower case, for example, loop, if …

Method names are mixed case, for example, getRecord

Methods are invoked using the “dot notation” used in Java, C++, C#, and
similar languages, for example, BIGARRAY.binarySearch(27)

Variable names These will be provided and comments // used, for example:

N = 5 // the number of items in the array

SCOREHISTORY,getExam(NUM) // get the student’s score on exam NUM

Assigning a value to a
variable

Values will be assigned using = , for example:

N = 5 // indicates the array has 5 data items

VALUE[0] = 7 // assigns the first data item in the array a value of 7

Output of information Output—this term is sufficient to indicate the data is output to a printer,
screen, for example:

output COUNT // display the count on the screen

Symbol Definition Examples

= is equal to X = 4, X = K If X = 4

> is greater than X > 4 if X > 4 then

>=
is greater than or equal
to

X >= 6 loop while X >= 6

< is less than VALUE[Y] < 7 loop until VALUE[Y] < 7

<= is less than or equal to VALUE[] <=12 if VALUE[Y] <= 12 then

≠ not equal to X ≠ 4, X ≠ K

AND logical AND A AND B if X < 7 AND Y > 2 then

OR logical OR A OR B if X < 7 OR Y > 2 then

NOT logical NOT NOT A if NOT X = 7 then

mod modulo 15 mod 7 = 1 if VALUE[Y] mod 7 = 0 then

div integer part of quotient 15 div 7 = 2 if VALUE[Y] div 7 = 2 then

Operation Flowchart example Pseudocode example

sequential
operations

perform task1

perform task2

conditional
operations

if MAX > 0 then

 output “positive”

else

 output “not positive”

end if

while-loop

loop while COUNT < 15

 COUNT = COUNT + 1

end loop

from/to-loop

loop COUNT from 0 to 5

 SUM = SUM + COUNT

end loop

YES

NO

NO

YES

YES

perform task1

perform task2

MAX > 0?

output “positive” output “not positive”

NO

COUNT < 15? COUNT = COUNT + 1

COUNT = 0

SUM = SUM + COUNT

COUNT = COUNT + 1

COUNT > 5?

Computer Science
First Exams 2014

Pseudocode in Examinations

• Standard Data Structures
• Examples of Pseudocode

Candidates are NOT allowed a copy of this document during their examinations.

Introduction

The purpose of this document is to show the standard data structures and methods which
may be displayed in IB Diploma Programme Computer Science examinations.

These methods, in their pseudocode format, may be used without explanation or
clarification in examination questions. Teachers should ensure that candidates will be able
to interpret these methods when presented as part of an examination question.

This list is not exhaustive. Other methods may be used in examination questions;
however any additional methods will be fully explained within the examination.

This information is supported by a series of pseudocode examples, demonstrating how the
pseudocode will be formatted and displayed during IB examinations.

Where answers are to be written in pseudocode, the examiners will be looking for clear
algorithmic thinking to be demonstrated. In examinations, this type of question will be
written in the approved notation, so a familiarity with it is expected.

It is accepted that under exam conditions candidates may, in their solutions, use
pseudocode similar to a programming language with which they are familiar. This is
acceptable. The markscheme will be written using the approved notation. Provided the
examiners can see the logic in the candidate’s response, regardless of language, it will be
credited.

No marks will be withheld for syntax errors.

Candidates are not permitted to invoke a powerful command if it trivializes the question.
For example, in response to a question asking the candidate to “Construct an algorithm to
arrange the elements of an array in increasing order”, the pseudocode “sort the array” is
inappropriate and will receive no marks.

Higher Level and Standard Level

Arrays

An array is an indexed and ordered set of elements. Unless specifically defined in the question,
the index of the first element in an array is 0.

 NAMES[0] // The first element in the array NAMES

Strings

A string can contain a set of characters, or can be empty. Strings can be used like any other
variable.

 MYWORD = "This is a string"
 if MYWORD = "the" then
 output MYWORD
 end if

Strings should be regarded as a class of objects. However no methods belonging to that class are
part of this standard. Instead, if a specialized method such as charAt() or substring() is to
be used in an examination, it will be fully specified as part of the question in which it is needed.

Collections

Collections store a set of elements. The elements may be of any type (numbers, objects, arrays,
Strings, etc.).

A collection provides a mechanism to iterate through all of the elements that it contains. The
following code is guaranteed to retrieve each item in the collection exactly once.

 // STUFF is a collection that already exists
 STUFF.resetNext()
 loop while STUFF.hasNext()
 ITEM = STUFF.getNext()
 // process ITEM in whatever way is needed
 end loop

Method
name

Brief description Example:
HOT, a collection of

temperatures

Comment

addItem() Add item HOT.addItem(42)
HOT.addItem("chile")

Adds an element that
contains the argument,
whether it is a value,
String, object, etc.

getNext() Get the next item

TEMP = HOT.getNext() getNext() will return
the first item in the
collection when it is first
called.

Note: getNext() does
not remove the item from
the collection.

resetNext() Go back to the start
of the collection

HOT.resetNext()
HOT.getNext()

Restarts the iteration
through the collection.
The two lines shown will
retrieve the first item in
the collection.

hasNext() Test: has next item if HOT.hasNext() then Returns TRUE if there are
one or more elements in
the collection that have
not been accessed by the
present iteration: The
next use of getNext()
will return a valid element.

isEmpty() Test: collection is
empty

if HOT.isEmpty() then Returns TRUE if the
collection does not
contain any elements.

Higher Level Only

Stacks

A stack stores a set of elements in a particular order: Items are retrieved in the reverse order in
which they are inserted (Last-in, First-out). The elements may be of any type (numbers, objects,
arrays, Strings, etc.).

Method
name

Brief description Example:
OPS, a stack of integers

Comment

push() Push an item onto
the stack

OPS.push(42)

Adds an element that
contains the argument,
whether it is a value,
String, object, etc. to the
top of the stack.

pop() Pop an item off the
stack

NUM = OPS.pop() Removes and returns
the item on the top of
the stack.

isEmpty() Test: stack
contains no
elements

if OPS.isEmpty() then Returns TRUE if the
stack does not contain
any elements.

Queues

A queue stores a set of elements in a particular order: Items are retrieved in the order in which they
are inserted (First-in, First-out). The elements may be of any type (numbers, objects, arrays,
Strings, etc.).

Method
name

Brief description Example:
WAIT, a queue of Strings

Comment

enqueue() Put an item into the
end of the queue

WAIT.enqueue("Mary") Adds an element that
contains the argument,
whether it is a value,
String, object, etc. to
the end of the queue.

dequeue() Remove an item
from front of the
queue

CLIENT = WAIT.dequeue() Removes and returns
the item at the front of
the queue.

isEmpty() Test: queue
contains no
elements

if WAIT.isEmpty() then Returns TRUE if the
queue does not
contain any elements.

Examples of Pseudocode

AVERAGING AN ARRAY

The array STOCK contains a list of 1000 whole numbers (integers). The following pseudocode
presents an algorithm that will count how many of these numbers are non-zero, adds up all those
numbers and then prints the average of all the non-zero numbers (divides by COUNT rather than
dividing by 1000).

 COUNT = 0
 TOTAL = 0

 loop N from 0 to 999
 if STOCK[N] > 0 then
 COUNT = COUNT + 1
 TOTAL = TOTAL + STOCK[N]
 end if
 end loop

 if NOT COUNT = 0 then
 AVERAGE = TOTAL / COUNT
 output "Average = " , AVERAGE
 else
 output "There are no non-zero values"
 end if

COPYING FROM A COLLECTION INTO AN ARRAY

The following pseudocode presents an algorithm that reads all the names from a collection,
NAMES, and copies them into an array, LIST, but eliminates any duplicates. That means each
name is checked against the names that are already in the array. The collection and the array are
passed as parameters to the method.

 COUNT = 0 // number of names currently in LIST

 loop while NAMES.hasNext()

 DATA = NAMES.getNext()

 FOUND = false
 loop POS from 0 to COUNT-1
 if DATA = LIST[POS] then
 FOUND = true
 end if
 end loop

 if FOUND = false then
 LIST[COUNT] = DATA
 COUNT = COUNT + 1
 end if
 end loop

FACTORS

The following pseudocode presents an algorithm that will print all the factors of an integer. It prints
two factors at a time, stopping at the square root. It also counts and displays the total number of
factors.

 // recall that
 // 30 div 7 = 4
 // 30 mod 7 = 2

 NUM = 140 // code will print all factors of this number
 F = 1
 FACTORS = 0

 loop until F*F > NUM //code will loop until F*F is greater than NUM

 if NUM mod F = 0 then

 D = NUM div F
 output NUM , " = " , F , "*" , D

 if F = 1 then
 FACTORS = FACTORS + 0
 else if F = D then
 FACTORS = FACTORS + 1
 else
 FACTORS = FACTORS + 2
 end if

 end if

 F = F + 1

 end loop

 output NUM , " has " , FACTORS , " factors "

COPYING A COLLECTION INTO AN ARRAY IN REVERSE

The following pseudocode presents an algorithm that will read all the names from a collection,
SURVEY, and then copy these names into an array, MYARRAY, in reverse order.

 // MYSTACK is a stack, initially empty

 COUNT = 0 // number of names

 loop while SURVEY.hasNext()
 MYSTACK.push(SURVEY.getNext())
 COUNT = COUNT + 1
 end loop

 // Fill the array, MYARRAY, with the names in the stack

 loop POS from 0 to COUNT-1
 MYARRAY[POS] = MYSTACK.pop()
 end loop

